The links:
- Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J.
2020;41(32):3038-3044. doi:10.1093/eurheartj/ehaa623 - Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. The
Lancet. 2020;395(10234):1417-1418. doi:10.1016/S0140-6736(20)30937-5 - Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-onchip model. EMBO Rep. 2021;22(6):e52744. doi:10.15252/embr.202152744
- Cui X, Chen W, Zhou H, et al. Pulmonary Edema in COVID-19 Patients: Mechanisms and
Treatment Potential. Front Pharmacol. 2021;12:1444. doi:10.3389/fphar.2021.664349 - Zwaveling S, Wijk RG van, Karim F. Pulmonary edema in COVID-19: Explained by bradykinin? J
Allergy Clin Immunol. 2020;146(6):1454-1455. doi:10.1016/j.jaci.2020.08.038 - Frontiers | Parallels in Sepsis and COVID-19 Conditions: Implications for Managing Severe
COVID-19 | Immunology. Accessed September 27, 2021.
Frontiers | Parallels in Sepsis and COVID-19 Conditions: Implications for Managing Severe COVID-19 | Immunology - Vincent J-L. COVID-19: it’s all about sepsis. Future Microbiol. 2021;16(3):131-133.
doi:10.2217/fmb-2020-0312 - Gómez-Mesa JE, Galindo-Coral S, Montes MC, Muñoz Martin AJ. Thrombosis and Coagulopathy
in COVID-19. Curr Probl Cardiol. 2021;46(3):100742. doi:10.1016/j.cpcardiol.2020.100742 - Chan NC, Weitz JI. COVID-19 coagulopathy, thrombosis, and bleeding. Blood. 2020;136(4):381-
- doi:10.1182/blood.2020007335
- Ortega-Paz L, Capodanno D, Montalescot G, Angiolillo DJ. Coronavirus Disease 2019–Associated
Thrombosis and Coagulopathy: Review of the Pathophysiological Characteristics and Implications for
Antithrombotic Management. J Am Heart Assoc. 2021;10(3):e019650. doi:10.1161/JAHA.120.019650 - Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and
multiorgan failure: A narrative review on potential mechanisms. J Mol Histol. Published online October
4, 2020:1-16. doi:10.1007/s10735-020-09915-3 - Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl
Cardiol. 2020;45(8):100618. doi:10.1016/j.cpcardiol.2020.100618 - Frontiers | Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic
Strategies | Physiology. Accessed September 27, 2021.
Frontiers | Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies | Physiology - Boldrini M, Canoll PD, Klein RS. How COVID-19 Affects the Brain. JAMA Psychiatry.
2021;78(6):682-683. doi:10.1001/jamapsychiatry.2021.0500 - Parry AH, Wani AH, Yaseen M. Neurological Dysfunction in Coronavirus Disease-19 (COVID-19).
Acad Radiol. 2020;27(9):1329-1330. doi:10.1016/j.acra.2020.05.024 - Schwabenland M, Salié H, Tanevski J, et al. Deep spatial profiling of human COVID-19 brains
reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity.
2021;54(7):1594-1610.e11. doi:10.1016/j.immuni.2021.06.002 - Rogers JP, Watson CJ, Badenoch J, et al. Neurology and neuropsychiatry of COVID-19: a
systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key
emerging narratives. J Neurol Neurosurg Psychiatry. 2021;92(9):932-941. doi:10.1136/jnnp-2021-326405 - Abbasi J. Researchers Investigate What COVID-19 Does to the Heart. JAMA. 2021;325(9):808-
- doi:10.1001/jama.2021.0107
- COVID-19 as a Possible Cause of Myocarditis and Pericarditis. American College of Cardiology.
Accessed September 27, 2021. Error - American College of Cardiology - Bzeizi K, Abdulla M, Mohammed N, Alqamish J, Jamshidi N, Broering D. Effect of COVID-19 on
liver abnormalities: a systematic review and meta-analysis. Sci Rep. 2021;11(1):10599.
doi:10.1038/s41598-021-89513-9 - Moon AM, Barritt AS. Elevated Liver Enzymes in Patients with COVID-19: Look, but Not Too
Hard. Dig Dis Sci. Published online September 2, 2020:1-3. doi:10.1007/s10620-020-06585-9 - Iqbal Z, Ho JH, Adam S, et al. Managing hyperlipidaemia in patients with COVID-19 and during its
pandemic: An expert panel position statement from HEART UK. Atherosclerosis. 2020;313:126-136.
doi:10.1016/j.atherosclerosis.2020.09.008 - Steenblock C, Richter S, Berger I, et al. Viral infiltration of pancreatic islets in patients with
COVID-19. Nat Commun. 2021;12(1):3534. doi:10.1038/s41467-021-23886-3 - Hayden MR. An Immediate and Long-Term Complication of COVID-19 May Be Type 2 Diabetes
Mellitus: The Central Role of β-Cell Dysfunction, Apoptosis and Exploration of Possible Mechanisms.
Cells. 2020;9(11):2475. doi:10.3390/cells9112475 - Mukherjee S, Banerjee O, Singh S, Maji BK. COVID 19 could trigger global diabetes burden – A
hypothesis. Diabetes Metab Syndr. 2020;14(5):963-964. doi:10.1016/j.dsx.2020.06.049 - Wu C-T, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell
impairment. Cell Metab. 2021;33(8):1565-1576.e5. doi:10.1016/j.cmet.2021.05.013 - Legrand M, Bell S, Forni L, et al. Pathophysiology of COVID-19-associated acute kidney injury.
Nat Rev Nephrol. Published online July 5, 2021:1-14. doi:10.1038/s41581-021-00452-0 - Nugent J, Aklilu A, Yamamoto Y, et al. Assessment of Acute Kidney Injury and Longitudinal
Kidney Function After Hospital Discharge Among Patients With and Without COVID-19. JAMA Netw
Open. 2021;4(3):e211095. doi:10.1001/jamanetworkopen.2021.1095 - Chen Z, Hu J, Liu L, et al. SARS-CoV-2 Causes Acute Kidney Injury by Directly Infecting Renal
Tubules. Front Cell Dev Biol. 2021;9:1245. doi:10.3389/fcell.2021.664868 - Gu J, Han B, Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral
Transmission. Gastroenterology. 2020;158(6):1518-1519. doi:10.1053/j.gastro.2020.02.054 - Lehmann M, Allers K, Heldt C, et al. Human small intestinal infection by SARS-CoV-2 is
characterized by a mucosal infiltration with activated CD8+ T cells. Mucosal Immunol. Published online
August 21, 2021:1-12. doi:10.1038/s41385-021-00437-z - Zhang H, Kang Z, Gong H, et al. Digestive system is a potential route of COVID-19: an analysis of
single-cell coexpression pattern of key proteins in viral entry process. Gut. 2020;69(6):1010-1018.
doi:10.1136/gutjnl-2020-320953